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Abstract

Natural frequencies of a damaged simply supported beam with a stationary roving mass are studied theoretically. The

transverse deflection of the cracked beam is constructed by adding a polynomial function, which represents the effects of a

crack, to the polynomial function which represents the response of the intact beam [J. Fernández-Sáez, L. Rubio,

C. Navarro, Approximate calculation of the fundamental frequencies for bending vibrations of cracked beams, Journal of

Sound and Vibration 225 (1999) 345–352]. By means of the boundary and kinematics conditions, approximate closed-form

analytical expressions are derived for the natural frequencies of an arbitrary mode of transverse vibration of a cracked

simply supported beam with a roving mass using the Rayleigh’s method. The natural frequencies change due to the roving

of the mass along the cracked beam. Therefore the roving mass can provide additional spatial information for damage

detection of the beam. That is, the roving mass can be used to probe the dynamic characteristics of the beam by roving the

mass from one end of the beam to the other. The presence of a crack causes the local stiffness of the beam to decrease

which, in turn, causes a marked decrease in natural frequency of the beam when the roving mass is located in the vicinity of

the crack. The magnitude of the roving mass used varied between 0% and 50% of the mass of the beam. The predicted

frequencies are shown to compare very well with those obtained using the finite element method and the experimental

results. Finally, the effects of crack depth, crack location and roving mass on the natural frequency of the beam are

investigated. It is shown that the natural frequencies of the cracked beam decrease as the crack depth increases and as the

roving mass is traversed closer to the crack location.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Inspection of structural components for damage is vital for making decisions about their repair or
retirement. A crack may cause serious failure of a structure; therefore it must be detected in the early state
when it is small. In practice, it is difficult to recognize most cracks by using visual inspection techniques;
generally, they may be detected by non-destructive techniques. System identification is an important tool for
such purpose.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area of the beam
B width of beam
Cm flexibility constant
E Young’s modulus of beam material
Es element size
fb frequency of the beam
fbm frequency of the beam with a roving

mass
G shear modulus of beam material
hc crack depth
H depth of beam
I the second moment of area of the beam’s

cross-section
lc location of a crack in the cracked beam

from the left support of the beam
lm location of the roving mass from the left

support of the beam
L length of beam
m roving mass
M bending moment transmitted by the

cracked section
Mb mass of the cracked beam
Rsh span-to-height ratio of beam
S(hc/H) configuration function for crack opening

area

Tmax maximum kinetic energy
Uci(x) mode shape of the cracked beam for

mode i

UIi(x) mode shape of the intact beam for mode i

Umax maximum potential energy
Dl spatial interval of roving of mass along

the cracked beam
DY discontinuity in the slope of the beam
n Poisson ratio of beam material
r density of beam material
ci ratio of the frequency of the cracked

beam with roving mass to the frequency
of the cracked beam alone for mode i

o circular frequency of the beam
oc1 first natural angular frequency of the

cracked beam with roving mass
oc1 variation of the first natural angular

frequencies of the cracked beam with
roving mass at the fixed location lm

oc1(n) variation of the first natural angular
frequencies of the cracked beam with
roving mass at the different position n

along the length of the beam
oci(n) variation of the angular natural fre-

quency of an arbitrary mode i of the
cracked beam with roving mass at the
different position n along the beam
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In the last three decades, a lot of research effort has been devoted to develop effective approaches
for detecting faults in machines and structures. This has resulted in a variety of analytical, numerical
and experimental techniques. In an earlier critical review on the vibration of cracked structures [1],
Dimarogonas discussed, in detail, various crack modelling methods including the equivalent reduced
cross-section, local bending moment and the local flexibility methods, crack identifications in beams and rotors,
and vibration coupling due to the presence of cracks. A wealth of further analytical, numerical and
experimental investigations have been reviewed. Salawu [2] has presented a review of methods of damage
detection using natural frequencies that are potentially useful for routine integrity assessment of structures.
Frequency values obtained from periodic vibration testing can be used to monitor structural behaviour and
also assess structural condition. An advantage of the approach is the global nature of the identified frequencies;
thus allowing the measurement points to be selected. Wang et al. [3] reviewed the advances in detecting
and locating damage in bridges by different kinds of non-destructive testing and evaluation (NDT & E)
methods. From the application point of view, classifications for general bridge components and their
damage types were presented. The relationships between damage, bridge components, and NDT & E
techniques are summarized. A state-of-the-art review was presented by Zhou and Sim [4] regarding
the research and development of in situ fibre-optic damage detection and assessment systems embedded in
fibre-reinforced composite structures. Chang et al. [5] have given a review on health monitoring of
civil infrastructure. The survey paper highlighted several research directions: the use of innovative
signal processing, new sensor, and control theory. A recent paper presented by Carden and Fanning [6]
reviewed the state of the art in vibration-based condition monitoring with particular emphasis on structural
engineering applications.
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Flaws or cracks in structures may have a serious influence on their dynamic characteristics. Cracks in
structures produce local change in stiffness altering dynamic characteristics such as changes in mass
distribution and damping properties. As a consequence, reduction in stiffness is associated with decreases in
the natural frequencies and modification of the mode shape of the structure. In an earlier study, Chondros and
Dimarogonas [7] had investigated the effects of cracks in welded joints using fracture mechanics concepts. The
change in the bending stiffness of a beam due to a crack was measured and used in the mathematical model.
They developed a frequency spectral method to identify cracks in various structures. However, due to the fact
that the stress field induced by the crack decays with distance from the crack, a direct approach relating crack
position and size with stiffness change is not easy to be developed. Such parameters affecting this approach
were discussed in the papers of Chondros and Dimarogonas [8,9].

The detection of cracks based on measured vibration frequencies has been investigated by many authors. An
earlier study carried out by Cawley and Adams [10] noted that the stress distribution through a vibrating
cracked structure was non-uniform and was different for each natural frequency (mode). The authors stated
that any localized damage would affect each mode differently, depending on the particular location of the
damage. Consequently, the measurement of the natural frequencies of a structure at two or more stages of its
lifetime offered the possibility of locating damage in any structure and of determining the severity of the
damage. Narkis [11] indicated that the data on the variation of the first two natural frequencies is sufficient for
identification of the location of a crack in a cracked simply supported uniform beam. Messina et al. [12,13]
calculated the damage location assurance criterion, which was used to identify single defect and later extended
to identify multiple damage sites on the basis of changes in the natural frequencies. A more comprehensive
survey was presented later by Salawu [2]. This survey reviewed the numerous technical literatures available on
crack detection based on the change in natural frequencies.

The ease of identification of natural frequencies has motivated the dynamic analysis of cracked structures.
Some researchers are focused on calculation of natural frequencies of cracked structure. Christides and Barr
[14] used a so-called two-term Rayleigh–Ritz solution to obtain the variation in the fundamental frequency of
simply supported beams with a mid-span crack. However, on a closer examination of their work, their
assumed mode shape is actually made up of the fundamental mode shape of a simply supported beam and a
polynomial function which represents the effects of the crack. They evaluated only the fundamental frequency
of the beam using the Rayleigh’s quotient. Chondros et al. [15] developed a continuous cracked beam
vibration theory for the lateral vibration of cracked Euler–Bernoulli beams with single- or double-edge open
cracks. The crack was modelled as a continuous flexibility using the displacement field in the vicinity of the
crack which was determined using fracture mechanics methods. The results of two independent evaluations of
the lowest natural frequency of lateral vibration for beams with a single-edge crack were presented.
Fernández-Sáez et al. [16] presented a simplified method to evaluate the fundamental frequency of cracked
Euler–Bernouilli beams. The transverse deflection of the cracked beam was constructed by adding a
polynomial function, which represents a crack, to the polynomial function of the intact beam. A closed-form
expression for the fundamental frequency of a simply supported beam was given using Rayleigh’s method.

Shen and Pierre [17] used an approximate Galerkin solution to analyse the free bending vibrations of simply
supported cracked beams. An analytical approach to the fundamental frequency of cracked Euler–Bernoulli
beams in bending vibrations is presented by Fernández-Sáez and Navarro [18]. The influence of the crack was
represented by an elastic rotational spring connecting the two segments of the beam at the cracked section.
Closed-form expressions for the approximated values of the fundamental frequency of cracked
Euler–Bernoulli beams in bending vibration are given. The results obtained agree with those numerically
obtained by the finite-element method (FEM). Loya et al. [19] have obtained the natural frequencies for
bending vibrations of a Timoshenko cracked beam with simple boundary conditions (BCs). The beam was
modelled as two segments connected by two massless springs (one extensional and the other rotational).
Finally, simple expressions for the natural frequencies of simply supported cracked beams were obtained.

On the other hand, some solution methods for the fundamental natural frequency of intact beams with
concentrated mass have been published. Low [20] used the equivalent-centre method to obtain the
fundamental frequency of vibrating beams carrying a concentrated mass at various locations. Chai and Low
[21] discussed proper shape functions to obtain high accuracy of fundamental natural frequency of slender
uniform intact beams with a concentrated mass. De Rosa et al. [22] examined the dynamic behaviour of a
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slender beam carrying a concentrated mass at an arbitrary abscissa, and the resulting frequency equation was
numerically solved. Low [23] presented a frequency analysis of an Euler–Bernoulli intact beam carrying a
concentrated mass at an arbitrary location. The dimensionless frequency equation for 10 combinations of
classical BCs was obtained by satisfying the differential equation of motion and by imposing the
corresponding boundary and compatibility conditions. Then Low [24] found that the eigenfrequency can
be predicted for an individual beam system carrying a single mass, by virtue of the Dunkerley’s formula. Also,
the Dunkerley’s method was recommended by Low for a beam carrying more than two masses at different
positions. Low [25,26] investigated the methods to derive frequency equations of intact beams carrying
multiple masses. In Ref. [25], Low compared the method of frequency determinant and the method of Laplace
transform for the effectiveness of each derivation for the frequency equation of the same beam-mass system.
Low [26] applied the method of Rayleigh quotient together with the respective shape function with a simple
trigonometric function for a quick frequency estimation of the beam-mass system.

During the period of vibration of a cracked structural member, the crack does not always remain open. The
static defection due to some loading component on the cracked beam (residual loads, body weight of a
structure, etc.), combined with the vibration effect may cause the crack to open at all times, or open and close
regularly, or to completely close depending on various loads at a given time. Chondros et al. [27] stated that if
the static defection due to some loading component on the beam (dead loads, own weight, etc.), is larger than
the vibration amplitudes, then the crack remains open all the time, or opens and closes regularly and the
problem is linear. If the static defection is small, then the crack will open and close in time depending on the
vibration amplitude. In this case the system is nonlinear. Chondros et al. [27] also discussed the effect of a
breathing crack on the flexural vibration of cracked structures. It should be noted that the crack model in the
present work always remains open during vibration. Therefore, the complexities associated with the nonlinear
characteristics due to a breathing crack are not present in this work.

Several researchers have investigated the effects of cracks on structures subjected to a moving load.
Mahmoud and Abou Zaid [28] developed an iterative modal analysis approach to determine the effect of
transverse cracks on the dynamic behaviour of simply supported undamped Bernoulli–Euler beams subject to
a moving mass. The presence of a crack results in higher deflections and alters the beam response patterns. In
particular, the largest defection in the beam for a given speed takes longer to build up, and a discontinuity
appears in the slope deflected shape of the beam at the crack location. Crack effects become more noticeable as
crack depth increases. The effect of the inertia force due to the moving mass is, in general, qualitatively similar
and additive to the effect of the crack. The exact effect of crack and mass depends on the speed, time, crack
size, crack location, and the moving mass magnitude. Lin and Chang [29] developed an analytical method to
present the dynamic response of a cracked cantilever beam subject to a concentrated moving load. The
cracked beam system is modelled as a two-span beam and each span of the continuous beam is assumed to
obey Euler–Bernoulli beam theory. The crack is modelled as a rotational spring with sectional flexibility.
Considering the compatibility requirements on the crack, the relationships between these two spans can be
obtained. By using the analytical transfer matrix method, eigensolutions of this cracked system are obtained
explicitly. The forced responses can be obtained by modal expansion theory using the determined
eigenfunctions. Some numerical results are shown to present the crack effects (crack extent, location of the
crack) and were studied for different speeds of the moving load.

As mentioned before, researchers have focused on the study of the frequency analysis of intact beams with
moving masses. In the present work, the frequency estimation of cracked beams with a stationary roving mass
is investigated. The transverse deflection of the cracked beam is constructed by adding a polynomial function,
which represents the effects of the crack, to the polynomial function which represents the response function of
the intact beam [16]. This paper presents a closed-form analytical expression for calculating frequencies of a
cracked simply supported beam with a roving mass. The classical application of the Rayleigh’s method to
determine the fundamental frequency of vibrations is extended to higher modes in order to derive approximate
formulae for evaluating the natural frequencies of a beam traversed by a stationary roving mass. But it should
be noted that this extension of the Rayleigh’s method is not the same as the Rayleigh–Ritz method which
requires the use of shape functions that contain the behaviour of the modes of interest to determine their
natural frequencies and mode shapes simultaneously. The extension of Rayleigh’s method in this work is the
determination of the Rayleigh’s quotient for each mode of vibration of a cracked beam using a modified form
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of the corresponding mode shape of an intact beam as the shape function. The results calculated from the
closed-form equation compare very well with those obtained by FEM and experimental results. Six masses of
magnitudes between 0% and 50% of the mass of the beam are used to show the effect of mass and location on
the natural frequency change. The roving mass which is traversed along the beam provides new approaches for
crack detection in beam-like structures.

It should be noted here that this proposed method based on a stationary roving mass is different from the
moving mass (or moving load) methods published in Refs. [28,29]. Mahmoud and Abou Zaid [28] and Lin and
Chang [29] have investigated deflections (or mode shapes) of structures (simply supported beams and
cantilever beams) subjected to a moving mass (or moving load) of a fixed or variable velocity. However, the
proposed method in this paper is focused on investigation of natural frequencies of cracked beams subjected to
a roving mass which is stationary (zero velocity) at each location considered. The roving of the mass enhances
the effects of the crack on the dynamics of the beam and facilitates the identification and location of damage in
the beam. The phrase ‘stationary roving mass’ has been used in preference to ‘moving mass’ in order to
highlight the fact that in this paper the mass is stationary at each location. Therefore, the method proposed
here does not consider a mass with a given velocity.

2. Formulation of cracked simply supported beam

The equation of motion of a uniform intact beam subjected to free harmonic vibration is given by [30–33]

EI
d4UI

dx4
ðxÞ � rAo2UI ðxÞ ¼ 0, (1)

where E is Young’s modulus and I is the second moment of area of the beam’s cross-section, o is the circular
frequency of the beam, UI(x) is the arbitrary scaled deformation term, x is the independent spatial variable, r
is mass density, and A is cross-sectional area of the beam. It should be noted that this elementary
Euler–Bernoulli theory of transverse vibrations of beams does not include the effects of rotary inertia and
transverse shear displacement.

The general solution of Eq. (1) and its spatial derivatives are given by [30–33]

UI ðxÞ ¼ A1 cosh bxþ A2 sinh bxþ A3 cos bxþ A4 sin bx, (2)

dUI

dx
¼ bðA1 sinh bxþ A2 cosh bx� A3 sin bxþ A4 cos bxÞ, (3)

d2UI

dx2
¼ b2ðA1 cosh bxþ A2 sinh bx� A3 cos bx� A4 sin bxÞ, (4)

where A1–A4 are arbitrary constants which need to be determined from the BCs. For a simply supported
beam, both displacement and bending moment will be zero at each end. Accordingly, one has the following
modal BCs:

UI ð0Þ ¼ UI ðLÞ ¼
d2UI

dx2
ð0Þ ¼

d2UI

dx2
ðLÞ ¼ 0, (5)

where L is the length of beam. Substituting Eq. (5) into Eqs. (3) and (4), gives the equations for the circular
frequency oi and mode shape UIi as [30–33]

oi ¼ ðip=LÞ2

ffiffiffiffiffiffiffi
EI

rA

s
for i ¼ 1; 2; 3; . . . , (6)

UIiðxÞ ¼ Di sin
ipx

L

� �
for i ¼ 1; 2; 3; . . . , (7)

where Di is an arbitrary scaling constant.
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3. Formulation of cracked simply supported beam with roving mass

3.1. Derivation of transverse deflected shape of cracked beam

A simply supported beam carrying a roving mass with a single-sided transverse crack whose depth is hc, is
shown in Fig. 1. The crack is located at position x ¼ lc from the left support of the beam. The width, depth
and length of the beam are, respectively, B, H and L, while m is the roving mass which is located at position
x ¼ lm. The crack is assumed to be fully opened throughout the period of vibration and the effect of the crack
is very apparent only at the crack location. The presence of the crack introduces a discontinuity or change in
the slope of the beam at the crack location which can be expressed as [16]

DY ¼ CmM, (8)

where M is the bending moment transmitted by the cracked section and Cm is the flexibility constant given by

Cm ¼
H

EI
S

hc

H
; cross�section geometry

� �
. (9)

As the cross-section is rectangular, then the function S(hc/H), which is the configuration function for crack
opening area, can be evaluated by fracture mechanics as [16,34]

Sðhc=HÞ ¼ 2
hc=H

1� hc=H

� �2

5:93� 19:69ðhc=HÞ þ 37:14ðhc=HÞ2
�

�35:84ðhc=HÞ3 þ 13:12ðhc=HÞ4
�
. ð10Þ

The transverse deflected shape Uci for any mode i of the cracked beam can be obtained from that of the
intact beam UIi(x) by including a cubic polynomial function B(x) ¼ B0+B1x+B2x

2+B3x
3 to represent the

effects of the crack on the displacement of the section of the cracked beam located to the left of the crack, and
another polynomial function C(x) ¼ C0+C1x+C2x

2+C3x
3 to represent crack effects on displacement of the

section of the beam to the right of the crack. Thus [16],

UciðxÞ ¼
Uc1iðxÞ ¼ UIiðxÞ þ B0 þ B1xþ B2x

2 þ B3x
3; 0pxplc

Uc2iðxÞ ¼ UIiðxÞ þ C0 þ C1xþ C2x
2 þ C3x

3; lcpxpL

(
for i ¼ 1; 2; 3; . . . , (11)

where the eight unknowns Bj and Cj(j ¼ 0,1,y,3) are to be determined from the boundary and kinematics
conditions of the two beam segments. Already, Eq. (11) satisfies the BCs, which are expressed by Eq. (5), while
the kinematics conditions are given by

Uc1iðlcÞ ¼ Uc2iðlcÞ;
d2Uc1iðlcÞ

dx2
¼

d2Uc2iðlcÞ

dx2
;

d3Uc1iðlcÞ

dx3
¼

d3Uc2iðlcÞ

dx3
, (12)
m

cl

x

L

A

A

A - A

B

H

ml

ch

Fig. 1. Model of a cracked simply supported beam with auxiliary mass.
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DY ¼
dUc2iðlcÞ

dx
�

dUc1iðlcÞ

dx
¼ HSðhc=HÞ

d2Uc2iðlcÞ

dx2
. (13)

For the fundamental mode of vibrations, that is for the case i ¼ 1, Eq. (7) gives UI1ðxÞ ¼ D1 sinðpx=LÞ.
Using this result in Eqs. (5), (11), (12) and (13) and simplifying gives Uc1(x) as

Uc1ðxÞ ¼

Uc11ðxÞ ¼ UI1ðxÞ �D1
p2lcH

L2
1�

L

lc

� �
Sðhc=HÞ

x

L
sin

plc

L
; 0pxplc;

Uc12ðxÞ ¼ UI1ðxÞ þD1
p2lcH

L2
Sðhc=HÞ 1�

x

L

� �
sin

plc

L
; lcpxpL:

8>>><
>>>:

(14)

3.2. Derivation of approximate formulae for fundamental frequency of cracked beam with roving mass

Generally, the fundamental frequency can be obtained by Rayleigh’s method [30–33]. The maximum values
of kinetic energy Tmax and potential energy Umax of the cracked simply supported beam can be calculated as

Tmax ¼
rAo2

c1

2

Z lc

0

U2
c11ðxÞdxþ

Z L

lc

U2
c21ðxÞdx

	 

þ

1

2
mo2

c1U
2
c1ðlmÞ, (15)

Umax ¼
EI

2

Z lc

0

d2Uc11ðxÞ

dx2

� �2

dxþ

Z L

lc

d2Uc21ðxÞ

dx2

� �2

dx

" #
þ

1

2
DYM, (16)

where lm is the location of the roving mass from the left support of the beam. It should be noted here that it
has been assumed that the transverse deflected shape of a cracked beam with a roving mass is approximately
the same as the case of cracked beam without a roving mass. In reality, the mode shapes of an intact
beam with a roving mass are different from those of an intact beam without a roving mass, as shown in
Refs. [21,23–26]. However, when the magnitude of the roving mass is relatively small, the mode shapes of an
intact beam with a roving mass are similar to those of intact beams without roving masses.

The Rayleigh’s formula for the fundamental frequency is derived by equating the maximum values of
kinetic and potential energy. Thus, from Eqs. (15) and (16), the first natural angular frequency of the cracked
beam with roving mass at the location lm can be obtained as

o2
c1 ¼

EI
R lc
0

d2Uc11ðxÞ

dx2

� �2

dxþ
R L

lc

d2Uc21ðxÞ

dx2

� �2

dx

" #
þ ð1=2ÞDYM

rA½
R lc
0

U2
c11ðxÞdxþ

R L

lc
U2

c21ðxÞdx� þ ð1=2ÞmU2
c1ðlmÞ

. (17)

This expression was evaluated using the Mathematica symbolic algebra software to give the first natural
angular frequency. When the roving mass traverses along the cracked beam at the interval of Dl, the variation
of the first natural angular frequency oc1(n) with position n along the length of the cracked beam can be
expressed as

oc1ðnÞ ¼ o1
1þ Zg1

1þ 2Zg1 þ ðp4=3ÞZ2½ðlc=LÞ4g1 � 2ðlc=LÞ3g1 þ ððlc=LÞ2g1Þ� þ a01ðnÞ

" #1=2
, (18)

where

Z ¼
H

L

� �
S

hc

H

� �
, (19)

g1 ¼ 1� cos ð2plc=LÞ, (20)

a01ðnÞ ¼
2mU2

c1ðlmÞ

D2
1rAL

, (21)
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lm ¼ nDl; n ¼ 0; 1; 2; . . . ;
L

Dl
þ 1, (22)

o1 ¼ ðp=LÞ2

ffiffiffiffiffiffiffi
EI

rA

s
. (23)

The detail derivation of Eq. (18) can be found in the appendix. It should be noted that Eq. (23) is obtained
from Eq. (6) for the case i ¼ 1, which is the first circular natural frequency of the intact beam.

3.3. Derivation of approximate formulae for higher frequencies of cracked beam with roving mass

Similarly, assuming that the Rayleigh’s quotient can be applied to higher modes of vibration and following
the above procedure, the variation of the angular natural frequency of an arbitrary mode i of the simply
supported cracked beam with position of the roving mass along the beam can be expressed as

ociðnÞ ¼ oi

1þ Zgi

1þ 2Zgi þ ði
4p4=3ÞZ2½ðlc=LÞ4gi � 2ðlc=LÞ3gi þ ððlc=LÞ2giÞ� þ a0iðnÞ

" #1=2
, (25)

where

gi ¼ 1� cosð2pilc=LÞ, (26)

a0iðnÞ ¼
2mU2

ciðnDlÞ

D2
i rAL

; n ¼ 0; 1; 2; . . . ;
L

Dl
þ 1, (27)

UciðxÞ ¼

Uci1ðxÞ ¼ UIiðxÞ �Di
i2p2lcH

L2
1�

L

lc

� �
Sðhc=HÞ

x

L
sin

iplc

L
; 0pxplc;

Uci2ðxÞ ¼ UIiðxÞ þDi

i2p2lcH

L2
Sðhc=HÞ 1�

x

L

� �
sin

iplc

L
; lcpxpL:

8>>><
>>>:

(28)

4. Numerical simulations, experimental verification and discussion of results

In this paper, a simply supported cracked beam was studied by the proposed analytical method and the
FEM. The beam with a single-sided transverse crack of depth hc, and located at distance lc from the left
support is shown in Fig. 1. The width, depth and length of the beam are, respectively, B, H and L.

4.1. Comparison of natural frequencies obtained from different FE models

It is noted here that indiscriminate application of the frequencies calculated by FEM, without consideration
of the assumptions under which the crack or flaw models were derived and are valid, might lead to gross
errors. In this subsection, the simply supported cracked beam was studied using the ABAQUS FE code [36].
FE models consisting of one- (1D), two- (2D) and three-dimensional (3D) models of a cracked beam were
analysed. A single-sided transverse crack with a depth hc ¼ 5mm was located at 500mm from the left end of
the cracked beam. All the cracked beam models were made of a bright mild steel of cross-sectional area
100� 25mm2 with a length of 3000mm. It has the following material properties: Young’s modulus
E ¼ 210GPa, Shear modulus G ¼ 80GPa, density r ¼ 7850 kg/m3, and Poisson ratio n ¼ 0.3. The natural
frequencies of the first 20 vibration bending modes of the cracked beam were computed by performing
eigenvalue extraction using ABAQUS.

Fig. 2 shows three FE models of the cracked beam. For 1D FE mesh, as shown in Fig. 2(a), the element type
was the 3-node beam element which is denoted in ABAQUS FE package as B22. Four different axial lengths
of elements (lx ¼ 5, 25, 125 and 250mm) were used in the analysis, which resulted in 601, 121, 25, and 13
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nodes, respectively, in the FE model for a 3000mm long cracked beam. The element B22 has three degrees of
freedom (two translations in x- and y-axis, one rotation around z-axis) at the nodes. This 1D FE model
considers the effect of rotary inertia and transverse shear. The crack is modelled by FE using a slot of width
1mm and located where the arrow is shown in Fig. 2(a). The profile of the beam section is a rectangle of
100� 25mm except that the profile at the cracked area is a 100� 20mm2 rectangle.

Fig. 2(b) and (c) are, respectively, the 2D and 3D FE mesh used in the analysis. The 2D FE model
used the eight-node plane stress element CPS8R while the 20-node 3D brick element C3D20R was used
for the 3D FE model. Similarly, four different axial lengths of elements (lx ¼ 5, 25, 125 and 250mm) were
used in the 2D and 3D FE models. The element CPS8R has two degrees of freedom (two translations in
x- and y-axis). The element C3D20R has three degrees of freedom (three translations in x-, y- and z-axis). The
3D FE model considers the effects of rotary inertia and transverse shear but these effects are neglected in
the 2D FE model. In the 2D FE model, a slot of 1mm wide� 5mm deep simulated the 5mm deep crack, while
the 3D FE model used a slot of 1� 5� 100mm3. The locations of these slots are indicated by the arrows
shown in Fig. 2(b) and (c).

Fig. 3(a)–(d) show the variations of the natural frequencies of the cracked beam with the number of the
bending mode using the above three FE models when four element lengths (lx ¼ 5, 25, 125 and 250mm) were
used. It can be seen from Fig. 3 that the natural frequencies are almost the same when the element length is
small (i.e. lx ¼ 5, 25mm) or the number of bending mode is small (i.e. the first eight bending modes). However,
for the higher modes, the frequencies are different due to the inclusion or non-inclusion of the effects of rotary
inertia and transverse shear.

In this paper, the first four natural frequencies of bending vibration were employed in the comparisons
between the proposed analytical method and the FEM. Therefore, since the first four natural frequencies
obtained from the 1D, 2D and 3D FE models are almost the same, then any of these FE models can be used.
But in order to model cracks which are angled in the x�y or x�z planes, only 3D model can be used.
Consequently, the 3D model was selected for all FE analysis.

4.2. Comparisons of analytical and FE results of a cracked beam with roving mass

The model of the cracked beam is the same as the above 3D FE model. Only the element length of 5mm was
used for analysis. Six types of roving mass ratios were used, namely: m/Mb ¼ 1.1%, 2.1%, 4.2%, 6.4%, 8.5%,
and 10.6%. The spatial interval of roving mass along the beam is 25mm. The natural frequencies of the first
four vibration bending modes of the cracked beam were computed by performing eigenvalue extraction and
comparing the results with the proposed analytical result obtained from Eq. (25).

Fig. 4(a) shows the variation of the frequency ratio of the first mode with non-dimensional axial location of
the roving mass. The figure shows the comparison of the results obtained using the proposed analytical
method with those obtained using the FEM when the six roving masses were traversed along the length of the
cracked beam at a spatial interval of 25mm. As can be seen from Fig. 4(a), the ranges of the first natural
frequency ratios are increased when the magnitude of the roving mass is increased. For example, the range of
the first natural frequency ratios of the cracked beam with auxiliary mass ratio m/Mb ¼ 1.1% is from 1.0 to
0.989, while the range for m/Mb ¼ 10.6% is from 1.0 to 0.908. Fig. 4(b) shows the relative deviation between
the predictions of the analytical and FEM for the variations of the first natural frequency for different roving
Fig. 2. FE models of a cracked beam (lc/L ¼ 1/6, L ¼ 3mm, hc ¼ 5mm): (a) 1D model, (b) 2D model, and (c) 3D model.
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Fig. 4. Comparison of the predicted variation of frequency ratio fbm/fb (a) of the first mode of the cracked beam (lc/L ¼ 1/6, hc/H ¼ 20%)

with non-dimensional axial location x/L of the auxiliary mass and the relative deviation (b) between the proposed analytical method (AM)

and the finite element method (FEM): ( ) AM, ( ) FEM, m/Mb ¼ 1.1%; ( ) AM, ( ) FEM, m/Mb ¼ 2.1%;

( ) AM, ( ) FEM, m/Mb ¼ 4.2%; ( ) AM, ( ) FEM, m/Mb ¼ 6.4%; ( ) AM, ( ) FEM,

m/Mb ¼ 8.5%; ( ) AM, ( ) FEM, m/Mb ¼ 10.6%.

Fig. 3. Natural frequencies of the cracked beam (lc/L ¼ 1/6, L ¼ 3mm, hc ¼ 5mm) with the number of bending mode using the three FE

models with different element length (lx): ( ) 1D model, ( ) 2D model, ( ) 3D model for (a) lx ¼ 5mm, (b) lx ¼ 25mm,

(c) lx ¼ 125mm, and (d) lx ¼ 250mm.
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masses. It is seen that the maximum absolute deviation between the two sets of predictions is less than 0.12%.
Therefore, the estimated values of the first natural frequency ratios of the cracked beam with roving mass
using the analytical equation are very close to those obtained from FE calculations.

Fig. 5 shows the difference between the frequencies of the cracked beam with the roving mass in different
positions from 10% to 50% of the length of the beam and the frequency of the cracked beam alone for mode
1. As can be seen from Fig. 5, when the position of the roving mass and the magnitude of the roving mass are
increased, the difference is also increased. The relationship between the difference between the frequencies and
the magnitude of the roving mass is almost linear. For example, when the roving mass ratio is 10.6% and the
location of the roving mass is only 10% from the left end of the beam, Fig. 5 shows that the difference in
frequencies is less than 1.0%. But when the roving mass ratio is 10.6% and the mass is located at the centre of
the beam (50% of the length of the beam), the difference in frequencies is about 9.0%. Similarly, it is seen that
for all values of roving mass, the greatest difference in frequency occurs when the mass is located at the centre
of the beam. This is due to the fact that the centre of the beam is the antinode of the first mode of the beam
and a roving mass positioned at that location has the greatest effect. In addition, Fig. 5 shows that there is a
very good agreement between the analytical and FE predictions.

Figs. 6(a), 8(a), and 10(a) are, respectively, the variation of the frequency ratios of the second, third, and
fourth modes with non-dimensional axial location of the roving mass. The figures show the comparison of the
results obtained using the proposed analytical method with those obtained using the FEM when the six roving
masses are traversed along the length of the cracked beam at a spatial interval of 25mm. Figs. 6(b), 8(b), and
10(b) are the corresponding relative deviations between the predictions of the proposed analytical and FEM
for the variations of the natural frequencies of the second, third and fourth modes for different roving masses.
These figures show that the relative deviations are increased when the magnitude of the roving mass and the
mode number are increased. For example, the maximum relative deviation of mode 2 is less than 1.2%
whereas those of modes 3 and 4 are, respectively, less than 2.4% and less than 3.4%. Therefore, all the
estimated values of the natural frequencies of the cracked beam with roving mass using the proposed
analytical method are very close to those obtained from FE calculations when the magnitude of the roving
mass is less than 11% of the mass of the beam (Figs. 7–11).

Similarly, Figs. 7, 9 and 11 show the corresponding differences between the frequencies of the cracked beam
with the roving mass in different positions ranging from 10% to 50% of the length of the beam and the
frequency of the cracked beam alone for modes 2–4. As can be seen from these figures, when the magnitude of
the roving mass is increased, the difference is also increased but in a fairly nonlinear fashion. Also, when the
position of the roving mass is increased, the difference is changed in a different way from that for mode 1. For
example, the difference for mode 2 is increased when the position of the roving mass is traversed from 10% to
Fig. 5. Comparison of the difference between the predicted frequencies of the first mode of the cracked beam (lc/L ¼ 1/6, hc/H ¼ 20%)

with auxiliary mass and the frequency of the cracked beam alone for varying auxiliary mass ratios and varying locations of the auxiliary

mass using the proposed method (AM) and the finite element method (FEM): ( ) FEM, ( ) AM, lm/L ¼ 0.1; ( )

FEM, ( ) AM, lm/L ¼ 0.2; ( ) FEM, ( ) AM, lm/L ¼ 0.3; ( ) FEM, ( ) AM, lm/L ¼ 0.4; and ( )

FEM, ( ) AM, lm/L ¼ 0.5.
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Fig. 6. Comparison of the predicted variation of frequency ratio fbm/fb (a) of the second mode of the cracked beam (lc/L ¼ 1/6,

hc/H ¼ 20%) with non-dimensional axial location x/L of the auxiliary mass and the relative deviation (b) between the proposed analytical

method (AM) and the finite element method (FEM): ( ) AM, ( ) FEM, m/Mb ¼ 1.1%; ( ) AM, ( ) FEM,

m/Mb ¼ 2.1%; ( ) AM, ( ) FEM, m/Mb ¼ 4.2%; ( ) AM, ( ) FEM, m/Mb ¼ 6.4%; ( ) AM, ( )

FEM, m/Mb ¼ 8.5%; and ( ) AM, ( ) FEM, m/Mb ¼ 10.6%.

Fig. 7. Comparison of the difference between the predicted frequencies of the second mode of the cracked beam (lc/L ¼ 1/6, hc/H ¼ 20%)

with auxiliary mass and the frequency of the cracked beam alone for varying auxiliary mass ratios and varying locations of the auxiliary

mass using the proposed method (AM) and the finite element method (FEM): ( ) FEM, ( ) AM, lm/L ¼ 0.1; ( )

FEM, ( ) AM, lm/L ¼ 0.2; ( ) FEM, ( ) AM, lm/L ¼ 0.3; ( ) FEM, ( ) AM, lm/L ¼ 0.4; and ( )

FEM, ( ) AM, lm/L ¼ 0.5.
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20% of the length of the beam whereas the difference is decreased when the position of the roving mass is
traversed from 30% to 50% length of the beam. When the roving mass is located at the positions of 20% and
30% length of the beam, the differences of these two cases are almost the same. But when the mass is located
at the centre of the beam, the difference between the frequencies of the cracked and intact beams is zero. This
behaviour, which results in the banding of the curves into three groups as shown in Fig. 7, is due to the fact
that mode 2 has a nodal position at the centre of the beam. Therefore, when the roving mass is located at the
centre of the beam, there is no difference in frequency as can clearly seen from Fig. 6(a). Also, when the roving
mass is near one end or near the centre, the difference in frequencies is small. But when the roving mass is
located between 20% and 30% of the length of beam, the largest difference in frequencies are observed.
This is due to the antinodal position of mode 2 that exists at 25% of the beam length. The variations observed
in Figs. 9 and 11 for modes 3 and 4 can similarly be explained in terms of the corresponding nodal and
antinodal positions.
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Fig. 8. Comparison of the predicted variation of frequency ratio fbm/fb (a) of the third mode of the cracked beam (lc/L ¼ 1/6, hc/H ¼ 20%)

with non-dimensional axial location x/L of the auxiliary mass and the relative deviation (b) between the proposed analytical method (AM)

and the finite element method (FEM): ( ) AM, ( ) FEM, m/Mb ¼ 1.1%; ( ) AM, ( ) FEM, m/Mb ¼ 2.1%;

( ) AM, ( ) FEM, m/Mb ¼ 4.2%; ( ) AM, ( ) FEM, m/Mb ¼ 6.4%; ( ) AM, ( ) FEM,

m/Mb ¼ 8.5%; and ( ) AM, ( ) FEM, m/Mb ¼ 10.6%.

Fig. 9. Comparison of the difference between the predicted frequencies of the third mode of the cracked beam (lc/L ¼ 1/6, hc/H ¼ 20%)

with auxiliary mass and the frequency of the cracked beam alone for varying auxiliary mass ratios and varying locations of the auxiliary

mass using the proposed method (AM) and the finite element method (FEM): ( ) FEM, ( ) AM, lm/L ¼ 0.1; ( )

FEM, ( ) AM, lm/L ¼ 0.2; ( ) FEM, ( ) AM, lm/L ¼ 0.3; ( ) FEM, ( ) AM, lm/L ¼ 0.4; and ( )

FEM, ( ) AM, lm/L ¼ 0.5.
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4.3. Comparisons of analytical and FE results for beams with different span-to-height ratios

All the previous results were obtained from beams with a span-to-height ratio Rsh of 120 (Rsh ¼ L/H ¼
3000mm/25mm ¼ 120). This subsection analyses the cases for small span-to-height ratios of 30 and 50,
i.e., the length of the beams are 750 and 1250mm, respectively. Fig. 12(a-1)–(d-1) show the variations of the
first four frequency ratios of the cracked beam (Rsh ¼ 50, hc ¼ 5mm) with non-dimensional axial location of
the roving mass. The crack location ratio is lc/L ¼ 0.4 while the roving mass ratio is m/Mb ¼ 2.1%.

Fig. 12(a-2)–(d-2) show the relative deviation between the predictions of the analytical and FEM for the
variations of the first four natural frequencies. It is seen that the maximum absolute deviation between the two
sets of predictions for the first mode is less than 0.11%. The maximum absolute deviations for the second,
third and fourth modes are, respectively, less than 0.6%, 0.8% and 1.5%. Therefore, the estimated values of
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Fig. 10. Comparison of the predicted variation of frequency ratio fbm/fb (a) of the fourth mode of the cracked beam (lc/L ¼ 1/6,

hc/H ¼ 20%) with non-dimensional axial location x/L of the auxiliary mass and the relative deviation (b) between the proposed

analytical method (AM) and the finite element method (FEM): ( ) AM, ( ) FEM,

m/Mb ¼ 1.1%; ( ) AM, ( ) FEM, m/Mb ¼ 2.1%; ( ) AM, ( ) FEM, m/Mb ¼ 4.2%; ( ) AM,

( ) FEM, m/Mb ¼ 6.4%; ( ) AM, ( ) FEM, m/Mb ¼ 8.5%; and ( ) AM, ( ) FEM, m/Mb ¼ 10.6%.

Fig. 11. Comparison of the difference between the predicted frequencies of the fourth mode of the cracked beam (lc/L ¼ 1/6, hc/H ¼ 20%)

with auxiliary mass and the frequency of the cracked beam alone for varying auxiliary mass ratios and varying locations of the auxiliary

mass using the proposed method (AM) and the finite element method (FEM): ( ) FEM, ( ) AM, lm/L ¼ 0.1; ( )

FEM, ( ) AM, lm/L ¼ 0.2; ( ) FEM, ( ) AM, lm/L ¼ 0.3; ( ) FEM, ( ) AM, lm/L ¼ 0.4; and ( )

FEM, ( ) AM, lm/L ¼ 0.5.
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the first four natural frequency ratios of the cracked beam with roving mass using the analytical equation are
very close to those obtained from FE calculations when the span-to-height ratio Rsh is 50. However, it can be
seen from Figs. 4, 6, 8 and 10 that the maximum relative deviations of the first four modes for a beam with a
span-to-height of 120 are, respectively, less than 0.01%, 0.1%, 0.2% and 0.4%. Hence, the relative deviations
are increased when the span-to-height ratio of a beam is decreased. The conclusion can be also verified by the
results shown in Fig. 13 which shows the variation of the first four frequency ratios, and the corresponding
relative deviations between the predictions of the analytical and FEM for the variations of the first four
natural frequencies when the span-to-height ratio Rsh is 30. The maximum relative deviations of the first four
modes are increased to 0.3%, 1.4%, 1.8% and 3.8%.

The reason for these phenomena is that the analytical method in the paper is based on the Euler–
Bernoulli beam theory which does not include the effects of rotary inertia and shear deformation. But if the
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Fig. 12. Comparison of the predicted variation of frequency ratio fbm/fb of the first four modes of the cracked beam (lc/L ¼ 1/6, Rsh ¼ 50)

with non-dimensional axial location x/L of the auxiliary mass (m/Mb ¼ 2.1%) and the relative deviation between the proposed analytical

method (AM) and the finite element method (FEM): ( ) AM, ( ) FEM for (a) mode 1, (b) mode 2, (c) mode 3 and (d)

mode 4.
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span-to-height ratio is decreased, the rotary inertia and the shear deformation effects will become more
significant. For these same reasons, the error is also significant in the calculation of natural frequencies of
vibration at higher modes [35]. A future work on the method based on the use of the Timoshenko beam model,
which includes the effects of rotary inertia and shear deformation, will be studied to provide a more accurate
method for all cracked beams with different span-to-height ratios.

4.4. Experimental verification

Experimental tests using simply supported aluminium beams were conducted. The dimensions of the
damaged beam are L�H�B ¼ 2400� 25� 100mm3, and the crack, whose depth is 5mm, was located at
lc ¼ 0.4m and was cut by a steel saw. The mass of the damaged beam is 16.2 kg. Fig. 14 shows the
experimental set-up used for testing. A random signal was generated by the LMS experimental modal testing
system, then amplified by a power amplifier, and exerted on the beam structure through a shaker. The
response signal and input signal were, respectively, sensed by a PCB accelerometer and a PCB force sensor.
The spatial probing interval of the roving mass was 100mm which resulted in a total of 25 positions of the
roving mass along the cracked beam. The frequency response functions (FRFs) of the cracked beam with two
different roving masses m ¼ 2 and 4 kg were measured and the natural frequencies were derived using the
LMS testing system. The roving mass ratios (m/Mb) are, respectively, 12.3% and 25% for the case of m ¼ 2
and 4 kg.

Fig. 15(a-1) and (a-2) are, respectively, the first two natural frequency curves of a cracked beam with the two
different roving masses, which were obtained by experiment and analytical predictions. Fig. 15(b-1) and (b-2)
are the corresponding maximum relative deviations of the first two modes. From Fig. 15(a-1) and (b-1), there
is a very good agreement between the analytical and experimental results for the first natural frequency. For
example, the maximum relative deviation is less than 0.4% for the case of m ¼ 2 kg, and is less than 0.8% for
the case of m ¼ 4 kg. For the second mode, the maximum relative deviation is less than 1.0% for the case of
m ¼ 2 kg, and is less than 4.2% for the case of m ¼ 4 kg. Therefore, the relative deviation is increased when the
magnitude of the roving mass and the mode number are increased. However, in a real application, the
magnitude of mass should be limited to a low value (i.e. 20%) to avoid destroying the beam-like structure
itself. Therefore, the predicted frequencies obtained from Eq. (25) are very useful in real applications.

4.5. Effect of crack depth and crack location

Fig. 16(a)–(d) show the variations of the first four frequency ratios of the cracked beam with non-
dimensional axial location of the roving mass. The crack location ratio is lc/L ¼ 0.4 while the roving mass
ratio is 4.2%. Depths of cracks ranging from 0% to 50% are investigated. In fact, an intact beam with a roving
mass is a special case whose crack depth is 0%. As can be seen from these figures, the frequencies are decreased
when the crack depth is increased, i.e., the differences of frequencies between cracked beams and intact beam
with roving mass are larger when the crack is deeper. Also, the higher the mode, the greater the difference in
frequencies. Thus, for crack depths of 50%, Fig. 17 shows that the largest differences in frequencies are about
5%, 7%, 12%, and 15% for modes 1–4, respectively.

In Fig. 17(a)–(d) is shown the variations of the first four frequency ratios of the cracked beam with non-
dimensional axial location of the roving mass. In this case, the crack depth ratio hc/H is 50% whereas the
roving mass ratio is 4.2%. The results shown are for six crack location ratios of lc/L ¼ 1/12, 2/12, 3/12, 4/12,
5/12, 6/12 which are designated by numbers 2–7, respectively. The intact beam is designated by number 1. The
results show that when the crack location ratios change from lc/L ¼ 1/12 to 6/12, the variations of the
frequency ratios of different modes change in a different way. For mode 1, when the crack location ratio is
increased from lc/L ¼ 1/12 to 6/12, the frequency ratio is decreased. However, for the second to fourth modes,
the changes of the frequency ratios are related to the existence of nodes and the amplitudes of mode shapes,
which are shown in Fig. 20. For mode 2, the frequency ratio is decreased from lc/L ¼ 1/12 to 3/12 and is
increased from lc/L ¼ 3/12 to 6/12. This is because mode 2 has a node at position lc/L ¼ 6/12 and an antinode
(maximum amplitude of mode shape) at position lc/L ¼ 3/12. Also, the crack effect is larger when the
amplitude of the mode shape is larger.
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Fig. 13. Comparison of the predicted variation of frequency ratio fbm/fb of the first four modes of the cracked beam (lc/L ¼ 1/6, Rsh ¼ 30)

with non-dimensional axial location x/L of the auxiliary mass (m/Mb ¼ 2.1% m/Mb ¼ 2.1%) and the relative deviation between the

proposed analytical method (AM) and the finite element method (FEM): ( ) AM, ( ) FEM for (a) mode 1, (b) mode 2,

(c) mode 3 and (d) mode 4.
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Fig. 14. Experimental setup.

Fig. 15. Comparison of the first two natural frequencies (a-1 and a-2) of a cracked aluminium beam with different auxiliary masses and

the relative deviation (b-1 and b-2) between the experimental and analytically predicted results: ( ) predicted frequency, m ¼ 2 kg,

( ), predicted frequency, m ¼ 4 kg, ( ) experimental frequency, m ¼ 2 kg, ( ) experimental frequency, m ¼ 4 kg; (a-1)

and (b-1) for the first natural frequency, (a-2) and (b-2) for the second natural frequency.
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Fig. 16. Variation of the frequency ratio fbm/fb of the cracked beam (lc/L ¼ 0.4) with non-dimensional axial location x/L of the auxiliary

mass ratio m/Mb ¼ 4.2%: ( ) hc/H ¼ 0 (intact beam), ( ) hc/H ¼ 10%, ( ) hc/H ¼ 20%, ( ) hc/H ¼ 30%,

( ) hc/H ¼ 40%, ( ) hc/H ¼ 50% for (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4.
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The frequency ratios decreased greatly if the crack is located at an antinodal position where the amplitude
of the mode shape is largest. For example, mode 3 has an antinode at position lc/L ¼ 2/12. Therefore, large-
differences in frequencies are observed at this antinodal position. Other very large differences in frequencies of
mode 3 are observed at the other antinodal positions at lc/L ¼ 6/12 and lc/L ¼ 10/12. It should be observed
that the differences in frequencies observed at lc/L ¼ 10/12 are similar to those observed at lc/L ¼ 2/12. Also,
it is noted here that if the crack is exactly on the node of one mode, the variation of the frequency ratio of the
cracked beam is almost the same as that of the intact beam. For example, from curve 7 in Fig. 17(b), which is
the variation of the frequency ratio of the second mode of the beam with a crack located at the position of
lc/L ¼ 6/12, is identical to curve 1, which is the variation of the frequency ratio of the second mode of the
intact beam. For the same reason, curves 1 and 5 in Fig. 17(c) are identical while curves 1, 4 and 7 in Fig. 17(d)
are overlapped.

It is obvious that if the beam-like structure is a symmetrical one, the curve of the variation of the frequency
ratio of the structure with the roving mass will be also symmetrical. For example, it can be seen from Fig. 17
that all the curves of the variation of the frequency ratio of the intact beam with the roving mass are
symmetrical. Also, all curves labelled ‘7’ in Fig. 17(a)–(d) are symmetrical because the cracks are located at
the centre of the beam and the structure is a symmetrical one. For the other cases, if the crack is not located at
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Fig. 17. Variation of the frequency ratio fbm/fb of the cracked beam (hc/H ¼ 50%) with non-dimensional axial location x/L of the auxiliary

mass ratio m/Mb ¼ 4.2%: (1) ( ) intact beam, (2) ( ) lc/L ¼ 1/12, (3) ( ) lc/L ¼ 2/12, (4) ( ) lc/L ¼ 3/12,

(5) ( ) lc/L ¼ 4/12, (6) ( ) lc/L ¼ 5/12, (7) (. . . . . . .) lc/L ¼ 6/12 for (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4.
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the centre of the beam, the curves of the variation of the frequency ratio of the beam with the roving mass are
asymmetrical, as can be seen from Fig. 17.

4.6. Combined effects of crack and roving mass

Fig. 18 shows the variation of the frequency ratio fbm/fb of an intact beam with non-dimensional
axial location of the roving mass for different roving mass ratios. Six roving mass ratios are used, namely,
m/Mb ¼ 0%, 10%, 20%, 30%, 40% and 50%. Because the intact simply supported beam is a symmetrical one,
all the curves of the variation of the frequency ratio are symmetrical. It can be seen from Fig. 18 that when
m/Mb ¼ 0%, no roving mass is added on the beam, the frequency ratio is 1. But when roving masses of ratios
m/Mb ¼ 10–50% are traversed along the length of the beam, Fig. 18 shows that the first four frequency ratios
decrease in magnitude as the roving mass ratio increases. However, all the frequency curves remain
symmetrical.

Fig. 19 shows the variation of the frequency ratio of the cracked beam with non-dimensional axial location
of the roving mass for different roving mass ratios. In this case, the crack depth ratio and crack location ratio
are, respectively, hc/H ¼ 50% and lc/L ¼ 50%. Also the roving masses of ratios m/Mb ¼ 10–50% are added.
Comparing the results in Figs. 18 and 19, it is seen that the frequency ratios of modes 1 and 3 of the cracked
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Fig. 18. Variation of the frequency ratio fbm/fb of an intact beam with non-dimensional axial location x/L of the auxiliary mass for

different auxiliary mass ratios (m/Mb): ( ) m/Mb ¼ 0%, ( ) m/Mb ¼ 10%, ( ) m/Mb ¼ 20%, ( ) m/Mb ¼ 30%,

( ) m/Mb ¼ 40%, ( ) m/Mb ¼ 50%, for (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4.
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beam are smaller than those of the intact beam with the same roving mass. This is due to the fact that the
location of the crack at the centre of the beam coincides with the antinodal positions of modes 1 and 3. Also,
since the crack is located at the centre of the beam, the structure is symmetrical. Therefore, all the curves in
Fig. 19 are symmetrical.

As stated previously, if the crack is exactly on the node of one mode, the variation of the frequency ratio of
the cracked beam is almost the same as that of the intact beam. Consequently, all curves in Fig. 19(b) and (d),
which show the variation of the frequency ratios for modes 2 and 4 of the cracked beam with a roving mass,
are the same as those in Fig. 18(b) and (d), respectively. The reason is that modes 2 and 4 have nodal positions
at the centre of the beam (Fig. 20).
5. Concluding remarks

This paper presents an analytical method to evaluate natural frequencies of an arbitrary mode of a cracked
beam-like structure with a stationary roving mass. The transverse deflection of the cracked beam is
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Fig. 19. Variation of the frequency ratio fbm/fb of the cracked beam (lc/L ¼ 50% and hc/H ¼ 50%) with non-dimensional axial location

x/L of the auxiliary mass for different auxiliary mass ratios (m/Mb): ( ) m/Mb ¼ 0%, ( ) m/Mb ¼ 10%, ( )

m/Mb ¼ 20%, ( ) m/Mb ¼ 30%, ( ) m/Mb ¼ 40%, ( ) m/Mb ¼ 50%, for (a) mode 1, (b) mode 2, (c) mode 3, and

(d) mode 4.

Fig. 20. The first four mode shapes of the simply supported beam: ( ) first mode, ( ) second mode, ( ) third mode,

and ( ) fourth mode.
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constructed by adding a polynomial function, which represents the effects of the crack, to the polynomial
function which represents the response function of the intact beam. By means of the boundary and kinematics
conditions, approximate closed-form analytical expressions are derived for the natural frequencies of arbitrary
modes of transverse vibration of a simply supported cracked beam with a roving mass using the Rayleigh’s
method. Natural frequencies change due to the roving mass along the cracked beam, therefore the roving mass
can provide additional spatial information for damage detection of the beam. The predicted frequencies have
been shown to compare very well with those obtained using the FEM and the experimental results. The
investigations on the effects of crack depth, crack location and the roving mass magnitude show that the
natural frequencies of the cracked beam decrease as the crack depth increases and as the roving mass is
traversed closer to the crack location. In a real application to damage detection using the roving mass, the
magnitude of the mass should be limited to a low value to avoid destroying the beam-like structure itself.

It should be noted that the analytical method presented in this paper is valid under the consideration of the
assumptions that the cracked beam does not include the effects of rotary inertia and shear deformation, that
the BCs of the cracked beam are simply supported, and that the crack remains open during vibration. A future
work on the method based on the use of the Timoshenko beam model, which includes the effects of rotary
inertia and shear deformation, will be studied to provide a more accurate method for cracked beams with
small span-to-height ratios.
Appendix A. Derivation of the first natural angular frequency
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By the Rayleigh’s principle (form of the energy method), Tmax ¼ Umax. Therefore, equating Eqs. (A.1)
and (A.2) gives
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Substituting Eqs. (A.4)–(A.8) into Eq. (A.3), gives
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